Special question of sum and product of roots


v   v   

Q. (1). If 1,2,3 are the roots of the equation x3+ax2+bx+c=0 then what is the value of c?
Ans. Apply product of roots αβγ= -c/a=- constant term/coefficient of x3
                           1x2x3 =   -c/1 →   6 = -c →   c= - 6

Q.2. If (x+√2) is a factor of kx2-√2 x + 1, then what is the value of k?
Ans. Putting value of x in given equation so
   x+2=0 then x= -2 →   k (-2)2- 2× (-√2) +1 = 0
                                                 2k+2+1=0
                                                                  2k+3=0   2k=-3   k= -3/2


Q.3. What is the factor of the equation (x² -5x) ² -30 (x² -5x) -216=0?


Ans.  First of all, let x2–5x =y then equation become
y2–30y-216=0 then factorize 216 in two term for example 216=36×6
so, can be written 30y = 36y-6y
so y2-(36y-6y)-2016=0             y2 -36y+6y-216=0
taking common we get
y(y-36) +6(y-36) =0       so     (y-36) (y-6) =0
then y has two values y=36 and y=6 then taking first
y=36 putting y=x2–5x
so, x2–5x-36=0 our first equation
so, factor of 36=9x4 and 9–4 =5
then x2–9x+4x-36=0
taking common x(x-9) +4(x-9) =0
(x-9) (x+4) =0 hence x=9, -4
similarly solving for y=6



Q.4. If a=x-y, b=y-z and c=z-x than what is the value of a3 + b3 +c3?

Ans:  Given a=x -y, b=y-z and c=z-x adding these equation
We get

Now, abc=x-y+y-z+z-x=0

Since we know the formula if

  a3+b3+c3- abc = (a+b+c) (a2+b2+c2-ab-bc-ca)
here a+b+c=0 so

..a3+b3+c3= abc = 3 (x-y) ( y-z) (z-x) so
a3+b3+c3=3(x-y) (y-z) (z-x)









                                                                                         






                                                                                        

Popular posts from this blog

Sum and product of roots/zeroes